

How do I love thee? Let me graph the ways!
Can you come up with one or more equations to graph a heart on the coordinate plane? The equations can be rectangular, polar, or parametric.

Bonus: Can you shift your heart so the graph or its interior includes the point $(2,14)$?

Solution: Answers will vary.

One way to create a heart is to use the graphs of two ellipses and restrict the domain.

$$
\begin{array}{ll}
2 x^{2}-2 x y+y^{2}-1=0 & \{x \mid x \geq 0\} \\
2 x^{2}+2 x y+y^{2}-1=0 & \{x \mid x \leq 0\}
\end{array}
$$

Alternatively, you can solve for y and use the absolute value function, and then restricting the domain is unnecessary.

$$
\begin{aligned}
& y=|x|+\sqrt{1-x^{2}} \\
& y=|x|-\sqrt{1-x^{2}}
\end{aligned}
$$

In either case, the result is a heart curve that looks like this:

To move heart so that it covers $(2,14)$, adjust the absolute value equations as follows:

$$
\begin{aligned}
& y=|x-2|+\sqrt{1-(x-2)^{2}}+14 \\
& y=|x-2|-\sqrt{1-(x-2)^{2}}+14
\end{aligned}
$$

The following polar equation will yield a cardioid:

$$
r=1-\sin \theta
$$

Other heart-shaped graphs can be created using polar, parametric or rectangular equations. A number of examples can be found at http://mathworld.wolfram.com/HeartCurve.html.

